Sunday, August 26, 2012

Wireless Power Transmission

Wireless Power Transmission 

It can be done by DISTURBED CHARGE OF GROUND which implemented at U.S.A

The possible ways are

Disturbed charge of ground and air method

The wireless transmission of alternating current electricity through the earth with an equivalent electrical displacement through the air above it achieves long ranges that are superior to the resonant electrical induction methods and favorably comparable to the electromagnetic radiation methods.  Electrical energy can be transmitted through inhomogeneous Earth with low loss because the net resistance between earth antipodes is considerably less than 1 ohm. The electrical displacement takes place predominantly by electrical conduction through the oceans, and metallic ore bodies and similar subsurface structures. The electrical displacement is also by means of electrostatic induction through the more dielectric regions such as quartz deposits and other non-conducting minerals.                                                                                                                                                          
"Bio electro magnetics and Implantable Devices" group in University of Utah, USA develops an efficient multi-Coil telemetry system for power and data transfer in biomedical Implants. Design approach is extendable to other industrial "smart" wireless power transfer system. Proposed multi-coil based telemetry system achieves more than twice power transfer efficiency and higher tunable frequency bandwidth as compared to its equivalent two-coil design. Based on circuit theory, analytical formulation is proposed to optimize the design for maximum power transfer, frequency bandwidth and power transfer efficiency.

 Wireless power transmission has been a dream since the days when Nikola Tesla imagined a world studded with enormous Tesla coils. But aside from advances in recharging electric toothbrushes, wireless power has so far failed to make significant inroads into consumer-level gear.


This summer, Intel researchers demonstrated a method--based on MIT research--for throwing electricity a distance of a few feet, without wires and without any dangers to bystanders (well, none that they know about yet). Intel calls the technology a "wireless resonant energy link," and it works by sending a specific, 10-MHz signal through a coil of wire; a similar, nearby coil of wire resonates in tune with the frequency, causing electrons to flow through that coil too. Though the design is primitive, it can light up a 60-watt bulb with 70 percent efficiency.
Numerous obstacles remain, the first of which is that the Intel project uses alternating current. To charge gadgets, we'd have to see a direct-current version, and the size of the apparatus would have to be considerably smaller. Numerous regulatory hurdles would likely have to be cleared in commercializing such a system, and it would have to be thoroughly vetted for safety concerns. Assuming those all go reasonably well, such receiving circuitry could be integrated into the back of your laptop screen in roughly the next six to eight years. It would then be a simple matter for your local airport or even Starbucks to embed the companion power transmitters right into the walls so you can get a quick charge without ever opening up your laptop bag




  the life line  of wire less transmission is showed here
 
l  1899
        Able to light lamps over 25 miles away without using wires
        High frequency current, of a Tesla coil, could light lamps filled with gas (like neon)
l  1940’s World War II developed ability to convert energy to microwaves using a magnetron, no method for converting microwaves back to electricity
l  1964 William C. Brown demonstrated a rectenna which could convert microwave power to electricity
l  Japanese continued to study the idea of SPS throughout the 1980’s
l  In 1995 NASA began a Fresh Look Study
l  Set up a research, technology, and investment schedule
  • 2000: Prof. Shu Yuen (Ron) Hui invent a planar wireless charging pad using the "vertical flux" approach and resonant power transfer for charging portable consumer electronic products. A patent is filed on "Apparatus and method of an inductive battery charger,” PCT Patent PCT/AU03/00 721, 2000.
  • 2001 Prof. Shu Yuen (Ron) Hui and Dr. S.C. Tang file a patent on "Planar Printed-Circuit-Board Transformers with Effective Electromagnetic Interference (EMI) Shielding". The EM shield consists of a thin layer of ferrite and a thin layer of copper sheet. It enables the underneath of the future wireless charging pads to be shielded with a thin EM shield structure with thickness of typically 0.7mm or less. Patent: US6,501,364.
  • 2001: Prof. Ron Hui's team demonstrate that the coreless PCB transformer can transmit power close to 100W in ‘A low-profile low-power converter with coreless PCB isolation transformer, IEEE Transactions on Power Electronics, Volume: 16 Issue: 3 , May 2001. A team of Philips Research Center Aachen, led by Dr. Eberhard Waffenschmidt, use it to power an 100W lighting device in their paper "Size advantage of coreless transformers in the MHz range" in the European Power Electronics Conference in Graz.
  • 2002: Prof. Shu Yuen (Ron) Hui extends the planar wireless charging pad concept using the vertical flux approach to incorporate free-positioning feature for multiple loads. This is achieved by using a multilayer planar winding array structure. Patent were granted as "Planar Inductive Battery Charger", GB2389720 and GB 2389767.
  • 2005: Prof. Shu Yuen (Ron) Hui and Dr. W.C. Ho publish their work in the IEEE Transactions on a planar wireless charging platform with free-positioning feature. The planar wireless charging pad is able to charge several loads simultaneously on a flat surface.
  • 2007: A localized charging technique is reported by Dr. Xun Liu and Prof. Ron Hui for the wireless charging pad with free-positioning feature. With the aid of the double-layer EM shields enclosing the transmitter and receiver coils, the localized charging selects the right transmitter coil so as to minimize flux leakage and human exposure to radiation
  • 2007: Using electrodynamic induction a physics research group, led by Prof. Marin Soljacic, at MIT, wirelessly power a 60W light bulb with 40% efficiency at a 2 metres (6.6 ft) distance with two 60 cm-diameter coils.
  • 2008: Bombardier offers a new wireless power transmission product PRIMOVE, a system for use on trams and light-rail vehicles.
  • 2008: Intel reproduces the original 1894 implementation of electrodynamic induction and Prof. John Boys group's 1988 follow-up experiments by wirelessly powering a nearby light bulb with 75% efficiency.
  • 2008: Greg Leyh and Mike Kennan of the Nevada Lightning Laboratory publish a paper on the disturbed charge of ground and air method of wireless power transmission with circuit simulations and test results showing an efficiency greater than can be obtained using the electrodynamic induction method.
  • 2009: Palm (now a division of HP) launches the Palm Pre smartphone with the Palm Touchstone wireless charger.
  • 2009: A Consortium of interested companies called the Wireless Power Consortium announce they are nearing completion for a new industry standard for low-power (which is eventually published in August 2010) inductive charging.
  • 2009: An Ex approved Torch and Charger aimed at the offshore market is introduced. This product is developed by Wireless Power & Communication, a Norway based company.
  • 2009: A simple analytical electrical model of electrodynamic induction power transmission is proposed and applied to a wireless power transfer system for implantable devices.
  • 2009: Lasermotive uses diode laser to win $900k NASA prize in power beaming, breaking several world records in power and distance, by transmitting over a kilowatt more than several hundred meters.
  • 2009: Sony shows a wireless electrodynamic-induction powered TV set, 60 W over 50 cm
  • 2010: Haier Group debuts “the world's first” completely wireless LCD television at CES 2010 based on Prof. Marin Soljacic's follow-up research on the 1894 electrodynamic induction wireless energy transmission method and the Wireless Home Digital Interface (WHDI).
  • 2010: System On Chip (SoC) group in University of British Columbia develops a highly efficient wireless power transmission systems using 4-coils. The design is optimized for implantable applications and power transfer efficiency of 82% is achieved.
  • 2012: "Bioelectromagnetics and Implantable Devices" group in University of Utah, USA develops an efficient multi-Coil telemetry system for power and data transfer in biomedical Implants. Design approach is extendable to other industrial "smart" wireless power transfer system. Proposed multi-coil based telemetry system achieves more than twice power transfer efficiency and higher tunable frequency bandwidth as compared to its equivalent two-coil design. Based on circuit theory, analytical formulation is proposed to optimize the design for maximum power transfer, frequency bandwidth and power transfer efficiency.


 

posted by  பரத்செல்வன்

1 comment:

  1. Wireless Power Transmission is a best system it invention 1899 and wireless power transfer project is most effective I have now added a AC to DC.
    wireless power

    ReplyDelete